Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38611532

RESUMO

Plant-based biostimulants (PBs), agents rich in bioactive compounds, are emerging as key players able to sustainably improve plant growth and crop productivity to address food security. PBs are generally applied as foliar spray or soil irrigation, while more recently, the application as seed priming treatments is being envisaged as a highly sustainable method to also improve seed quality and germination. Therefore, this review proposes to explore the use of PBs for the seeds industry, specifically discussing about the relevance of product market values, sustainable methods for their production, why and how PBs are used for seed priming, and pinpointing specific strengths and challenges. The collected research studies indicate that PBs applied to seeds result in improved germination, seedling growth, and stress tolerance, although the molecular mechanisms at work are still largely overlooked. The high variability of bioactive molecules and used sources point towards a huge reservoir of nature-based solutions in support of sustainable agriculture practices.

2.
Diagnostics (Basel) ; 14(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38667447

RESUMO

Shiga-like toxin-producing Escherichia coli (STEC) is a well-known cause of foodborne acute diarrheic diseases, especially in children and the elderly. The potentially fatal complications associated with toxin production range from bloody diarrhea and ischemic colitis to kidney failure, hemolytic-uremic syndrome (HUS), and colon perforation. Here, we describe a case and literature review of STEC-induced colitis, highlighting the clinical features and the necessary tools for the best diagnostic approach and management. Facing challenging differential diagnosis, ranging from ischemic colitis and inflammatory bowel disease to infectious processes due to a pathogenic or opportunistic agent, we conducted a step-by-step exploration. Following bacteriological investigation, imagistic screening, and colonoscopy, we ruled out some of the initial suppositions and reached a final diagnosis, while also considering the pathological results. Although antibiotics are not indicated in this pathology, our patient did receive antibiotics, given the risk of translocation and colon perforation, without any associated complications such as HUS or peritonitis. Detailed and rigorous investigations conducted by a multi-specialty team are required for prompt medical support. Coping with the symptoms and refraining from further complications are the mainstem aims of treatment.

3.
Front Plant Sci ; 15: 1344383, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390302

RESUMO

Water stress brought about by climate change is among the major global concerns threatening food security. Rice is an important staple food which requires high water resources. Being a semi-aquatic plant, rice is particularly susceptible to drought. The aim of this work was to develop techniques directed to promote rice resilience to water deprivation stress during germination by implementing specific seed priming treatments. Five popular Italian rice varieties were subjected to priming treatments using novel, sustainable solutions, like poly-gamma-glutamic acid (γ-PGA), denatured γ-PGA (dPGA), and iron (Fe) pulsing, alone or in combination. The effect of the developed priming methods was tested under optimal conditions as well as under water deprivation stress imposed by polyethylene glycol (PEG) treatments. The priming efficacy was phenotypically determined in terms of germination behavior by measuring a series of parameters (germinability, germination index, mean germination time, seed vigor index, root and shoot length, germination stress tolerance index). Biochemical analyses were carried out to measure the levels of iron uptake and accumulation of reactive oxygen species (ROS). Integrative data analyses revealed that the rice varieties exhibited a strong genotype- and treatment-specific germination behavior. PEG strongly inhibited germination while most of the priming treatments were able to rescue it in all varieties tested except for Unico, which can be defined as highly stress sensitive. Molecular events (DNA repair, antioxidant response, iron homeostasis) associated with the transition from seed to seedling were monitored in terms of changes in gene expression profiles in two varieties sensitive to water deprivation stress with different responses to priming. The investigated genes appeared to be differentially expressed in a genotype-, priming treatment-, stress- and stage-dependent manner. The proposed seed priming treatments can be envisioned as sustainable and versatile agricultural practices that could help in addressing the impact of climate challenges on the agri-food system.

4.
Front Plant Sci ; 14: 1188546, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37409306

RESUMO

Introduction: Several molecular aspects underlying the seed response to priming and the resulting vigor profile are still poorly understood. Mechanisms involved in genome maintenance deserve attention since the balance between stimulation of germination and DNA damage accumulation versus active repair is a key determinant for designing successful seed priming protocols. Methods: Changes in the Medicago truncatula seed proteome were investigated in this study, using discovery mass spectrometry and label-free quantification, along the rehydration-dehydration cycle of a standard vigorization treatment (hydropriming plus dry-back), and during post-priming imbibition. Resuts and discussion: From 2056 to 2190 proteins were detected in each pairwise comparison, among which six were differentially accumulated and 36 were detected only in one condition. The following proteins were selected for further investigation: MtDRP2B (DYNAMIN-RELATED PROTEIN), MtTRXm4 (THIOREDOXIN m4), and MtASPG1 (ASPARTIC PROTEASE IN GUARD CELL 1) showing changes in seeds under dehydration stress; MtITPA (INOSINE TRIPHOSPHATE PYROPHOSPHORYLASE), MtABA2 (ABSCISIC ACID DEFICIENT 2), MtRS2Z32 (SERINE/ARGININE-RICH SPLICING FACTOR RS2Z32), and MtAQR (RNA HELICASE AQUARIUS) that were differentially regulated during post-priming imbibition. Changes in the corresponding transcript levels were assessed by qRT-PCR. In animal cells, ITPA hydrolyses 2'-deoxyinosine triphosphate and other inosine nucleotides, preventing genotoxic damage. A proof of concept was performed by imbibing primed and control M. truncatula seeds in presence/absence of 20 mM 2'-deoxyinosine (dI). Results from comet assay highlighted the ability of primed seeds to cope with dI-induced genotoxic damage. The seed repair response was assessed by monitoring the expression profiles of MtAAG (ALKYL-ADENINE DNA GLYCOSILASE) and MtEndoV (ENDONUCLEASE V) genes that participate in the repair of the mismatched I:T pair in BER (base excision repair) and AER (alternative excision repair) pathways, respectively.

5.
Genes (Basel) ; 14(4)2023 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-37107642

RESUMO

The tyrosyl-DNA phosphodiesterase 1 (TDP1) enzyme hydrolyzes the phosphodiester bond between a tyrosine residue and the 3'-phosphate of DNA in the DNA-topoisomerase I (TopI) complex, being involved in different DNA repair pathways. A small TDP1 gene subfamily is present in plants, where TDP1α has been linked to genome stability maintenance, while TDP1ß has unknown functions. This work aimed to comparatively investigate the function of the TDP1 genes by taking advantage of the rich transcriptomics databases available for the Arabidopsis thaliana model plant. A data mining approach was carried out to collect information regarding gene expression in different tissues, genetic backgrounds, and stress conditions, using platforms where RNA-seq and microarray data are deposited. The gathered data allowed us to distinguish between common and divergent functions of the two genes. Namely, TDP1ß seems to be involved in root development and associated with gibberellin and brassinosteroid phytohormones, whereas TDP1α is more responsive to light and abscisic acid. During stress conditions, both genes are highly responsive to biotic and abiotic treatments in a time- and stress-dependent manner. Data validation using gamma-ray treatments applied to Arabidopsis seedlings indicated the accumulation of DNA damage and extensive cell death associated with the observed changes in the TDP1 genes expression profiles.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Transcriptoma/genética , Dano ao DNA , DNA/metabolismo , Mineração de Dados
6.
Antioxidants (Basel) ; 12(3)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36978875

RESUMO

ROS homeostasis is crucial to maintain radical levels in a dynamic equilibrium within physiological ranges. Therefore, ROS quantification in seeds with different germination performance may represent a useful tool to predict the efficiency of common methods to enhance seed vigor, such as priming treatments, which are still largely empirical. In the present study, ROS levels were investigated in an experimental system composed of hydroprimed and heat-shocked seeds, thus comparing materials with improved or damaged germination potential. A preliminary phenotypic analysis of germination parameters and seedling growth allowed the selection of the best-per-forming priming protocols for species like soybean, tomato, and wheat, having relevant agroeconomic value. ROS levels were quantified by using two noninvasive assays, namely dichloro-dihydro-fluorescein diacetate (DCFH-DA) and ferrous oxidation-xylenol orange (FOX-1). qRT-PCR was used to assess the expression of genes encoding enzymes involved in ROS production (respiratory burst oxidase homolog family, RBOH) and scavenging (catalase, superoxide dismutase, and peroxidases). The correlation analyses between ROS levels and gene expression data suggest a possible use of these indicators as noninvasive approaches to evaluate seed quality. These findings are relevant given the centrality of seed quality for crop production and the potential of seed priming in sustainable agricultural practices.

7.
Plant Cell Rep ; 42(4): 657-688, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36780009

RESUMO

KEY MESSAGE: The potential of seed priming is still not fully exploited. Our limited knowledge of the molecular dynamics of seed pre-germinative metabolism is the main hindrance to more effective new-generation techniques. Climate change and other recent global crises are disrupting food security. To cope with the current demand for increased food, feed, and biofuel production, while preserving sustainability, continuous technological innovation should be provided to the agri-food sector. Seed priming, a pre-sowing technique used to increase seed vigor, has become a valuable tool due to its potential to enhance germination and stress resilience under changing environments. Successful priming protocols result from the ability to properly act on the seed pre-germinative metabolism and stimulate events that are crucial for seed quality. However, the technique still requires constant optimization, and researchers are committed to addressing some key open questions to overcome such drawbacks. In this review, an update of the current scientific and technical knowledge related to seed priming is provided. The rehydration-dehydration cycle associated with priming treatments can be described in terms of metabolic pathways that are triggered, modulated, or turned off, depending on the seed physiological stage. Understanding the ways seed priming affects, either positively or negatively, such metabolic pathways and impacts gene expression and protein/metabolite accumulation/depletion represents an essential step toward the identification of novel seed quality hallmarks. The need to expand the basic knowledge on the molecular mechanisms ruling the seed response to priming is underlined along with the strong potential of applied research on primed seeds as a source of seed quality hallmarks. This route will hasten the implementation of seed priming techniques needed to support sustainable agriculture systems.


Assuntos
Simulação de Dinâmica Molecular , Sementes , Sementes/metabolismo , Germinação/genética , Plântula
8.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36614175

RESUMO

Phytic acid (PA) is a strong anti-nutritional factor with a key antioxidant role in countering reactive oxygen species. Despite the potential benefits of low phytic acid (lpa) mutants, the reduction of PA causes pleiotropic effects, e.g., reduced seed germination and viability loss related to seed ageing. The current study evaluated a historical series of naturally aged seeds and showed that lpa1-1 seeds aged faster as compared to wildtype. To mimic natural ageing, the present study set up accelerated ageing treatments at different temperatures. It was found that incubating the seeds at 57 °C for 24 h, the wildtype germinated at 82.4% and lpa1-1 at 40%. The current study also hypothesized two possible solutions to overcome these problems: (1) Classical breeding was used to constitute synthetic populations carrying the lpa1-1 mutation, with genes pushing anthocyanin accumulation in the embryo (R-navajo allele). The outcome showed that the presence of R-navajo in the lpa1-1 genotype was not able to improve the germinability (-20%), but this approach could be useful to improve the germinability in non-mutant genotypes (+17%). (2) In addition, hydropriming was tested on lpa1-1 and wildtype seeds, and germination was improved by 20% in lpa1-1, suggesting a positive role of seed priming in restoring germination. Moreover, the data highlighted metabolic differences in the metabolome before and after hydropriming treatment, suggesting that the differences in germination could also be mediated by differences in the metabolic composition induced by the mutation.


Assuntos
Germinação , Ácido Fítico , Germinação/genética , Ácido Fítico/metabolismo , Zea mays/genética , Sementes/metabolismo , Melhoramento Vegetal
9.
Cureus ; 15(12): e50079, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38186509

RESUMO

Colorectal polyps, frequently adenomas, are common in older adults, with villous adenomas being a notable subset due to their potential for significant malignancy risk. This case report highlights a rare instance of a giant villous adenoma in a 79-year-old female patient, challenging in both diagnosis and treatment. The patient, with a history of untreated essential arterial hypertension, was hospitalized for severe anemia following a massive rectal hemorrhage. An irreducible, prolapsed rectal mass was evident upon examination, and further investigations, including rectoscopy and abdominopelvic computed tomography scan, confirmed a villous adenoma with severe dysplasia. Given the tumor's substantial size, circumferential nature, and proximity to the dentate line, an abdominoperineal resection using the Miles technique was performed. The histopathological examination post-surgery confirmed the presence of a villous adenoma with high-grade epithelial neoplasia and localized areas of well-differentiated tubular adenocarcinoma. This case underscores the diagnostic and management complexities of large villous adenomas, emphasizing the need for meticulous surgical decision-making to ensure oncological safety and patient welfare, particularly when conservative resection may be inadequate.

10.
Artigo em Inglês | MEDLINE | ID: mdl-36361200

RESUMO

The predictions on the influence of the SARS-CoV-2 pandemic on access to medical services in Romania predicted a 35% drop in oncological hospitalizations in 2020 compared to the previous decade, raising the hypothesis that patients with colorectal cancer can become indirect victims of the ongoing pandemic. Therefore, the aim of the current research was to observe how the COVID-19 pandemic influenced colorectal cancer surgery in Romania, to determine the level of addressability towards specialized care, to compare the cancer staging between the pandemic and pre-pandemic periods, and to observe the risk factors for disease progression. This retrospective study was spread over three years, respectively, from March 2019 to March 2022, and included a total of 198 patients with a history of colorectal cancer surgery. It was decided to perform a parallel comparison of 2019, 2020, and 2021 to observe any significant changes during the pandemic. Our clinic encountered a significant decrease in all interventions during the pandemic; although the number of CRC surgeries remained constant, the cases were more difficult, with significantly more patients presenting in emergency situations, from 31.3% in 2019 to 50.0% in 2020 and 57.1% in 2021. Thus, the number of elective surgeries decreased significantly. The proportion of TNM (tumor-node-metastasis) staging was, however, statistically significant between the pre-pandemic and pandemic period. In 2019, 13.3% of patients had stage IIa, compared with 28.8% in 2020 and 13.1% in 2021. Similarly, the proportion of very advanced colorectal cancer was higher during the pandemic period of 2020 and 2021 (12.0% in 2019 vs. 12.5% in 2020 and 25.0% in 2021), which was represented by a significantly higher proportion of patients with bowel perforation. Patients with an advanced TNM stage had a 6.28-fold increased risk of disease progression, followed by lymphovascular invasion (HR = 5.19). However, the COVID-19 pandemic, represented by admission years 2020 and 2021, did not pose a significant risk for disease progression and mortality. In-hospital mortality during the pandemic also did not change significantly. After the pandemic restrictions have been lifted, it would be advisable to conduct a widespread colorectal cancer screening campaign in order to identify any instances of the disease that went undetected during the SARS-CoV-2 pandemic.


Assuntos
COVID-19 , Neoplasias Colorretais , Humanos , COVID-19/epidemiologia , Pandemias , SARS-CoV-2 , Estudos Retrospectivos , Romênia/epidemiologia , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/cirurgia , Progressão da Doença
11.
Physiol Plant ; 174(3): e13698, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35526223

RESUMO

Conservation of plant genetic diversity is fundamental for crop improvement, increasing agricultural production and sustainability, especially in the face of climatic changes. Although seed longevity is essential for the management of seed banks, few studies have, so far, addressed differences in this trait among the accessions of a single species. Eight Pisum sativum L. (pea) accessions were investigated to study the impact of long-term (approximately 20 years) storage, aiming to reveal contrasting seed longevity and clarify the causes for these differences. The outstanding seed longevity observed in the G4 accession provided a unique experimental system. To characterize the biochemical and physical status of stored seeds, reactive oxygen species, lipid peroxidation, tocopherols, free proline and reducing sugars were measured. Thermoanalytical measurements (thermogravimetry and differential scanning calorimetry) and transmission electron microscopy combined with immunohistochemical analysis were performed. The long-lived G4 seeds neither consumed tocopherols during storage nor showed free proline accumulation, as a deterioration hallmark, whereas reducing sugars were not affected. Thermal decomposition suggested a biomass composition compatible with the presence of low molecular weight molecules. Expansion of heterochromatic areas and reduced occurrence of γH2AX foci were highlighted in the nucleus of G4 seeds. The longevity of G4 seeds correlates with the occurrence of a reducing cellular environment and a nuclear ultrastructure favourable to genome stability. This work brings novelty to the study of within-species variations in seed longevity, underlining the relevance of multidisciplinary approaches in seed longevity research.


Assuntos
Pisum sativum , Sementes , Pisum sativum/genética , Prolina , Sementes/fisiologia , Açúcares/análise , Tocoferóis/análise
12.
Exp Ther Med ; 23(6): 399, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35619634

RESUMO

COVID-19 reinfection, although a controversial issue, is an important clinical problem in cancer patients and beyond. The present study aimed to identify the risk factors associated with worse outcomes in cancer patients with Covid-19 in both first infection and reinfection and to describe the involvement of vaccines in reinfection outcome. The present study enrolled 85 patients with solid tumors who had Covid-19 infection and had not been previously vaccinated. Classical risk factors associated with worse outcomes in cancer patients with second SARS-Cov infection were considered. The patients were followed up retrospectively, measuring mortality at the first and second infection and the vaccination rate after the first infection. The factors associated with the highest risk of mortality at the first infection were, in order of importance: intensive care unit (ICU) admission, unfavorable performance status, radiologically quantifiable presence of oncological disease, and administration of cytotoxic chemotherapy in the period immediately before infection. The risk factors associated with higher mortality from reinfection were ECOG 3-4 performance status and administration of cytotoxic chemotherapy in the period immediately before infection. In the studied patients, mortality from reinfection was not affected by prior vaccination. Thus, bearing in mind all of these risk factors for poor outcomes in cancer patients with solid tumors presenting with Covid-19 can help the treating oncologists make personalized decisions about patient care during the pandemic.

13.
Genes (Basel) ; 13(4)2022 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-35456473

RESUMO

SOG1 (Suppressor of the Gamma response 1) is the master-regulator of plant DNA damage response (DDR), a highly coordinated network of DNA damage sensors, transducers, mediators, and effectors, with highly coordinated activities. SOG1 transcription factor belongs to the NAC/NAM protein family, containing the well-conserved NAC domain and five serine-glutamine (SQ) motifs, preferential targets for phosphorylation by ATM and ATR. So far, the information gathered for the SOG1 function comes from studies on the model plant Arabidopsis thaliana. To expand the knowledge on plant-specific DDR, it is opportune to gather information on other SOG1 orthologues. The current study identified plants where multiple SOG1 homologues are present and evaluated their functions by leveraging the information contained in publicly available transcriptomics databases. This analysis revealed the presence of multiple SOG1 sequences in thirteen plant species, and four (Medicago truncatula, Glycine max, Kalankoe fedtschenkoi, Populus trichocarpa) were selected for gene expression data mining based on database availability. Additionally, M. truncatula seeds and seedlings exposed to treatments known to activate DDR pathways were used to evaluate the expression profiles of MtSOG1a and MtSOG1b. The experimental workflow confirmed the data retrieved from transcriptomics datasets, suggesting that the SOG1 homologues have redundant functions in different plant species.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mineração de Dados , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Plant Cell Environ ; 45(5): 1457-1473, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35188276

RESUMO

Re-establishment of desiccation tolerance is essential for the survival of germinated seeds facing water deficit in the soil. The molecular and ultrastructural features of desiccation tolerance maintenance and loss within the nuclear compartment are not fully resolved. In the present study, the impact of desiccation-induced genotoxic stress on nucleolar ultrastructure and ribogenesis was explored along the rehydration-dehydration cycle applied in standard seed vigorization protocols. Primed and overprimed Medicago truncatula seeds, obtained through hydropriming followed by desiccation (dry-back), were analysed. In contrast to desiccation-tolerant primed seeds, overprimed seeds enter irreversible germination and do not survive dry-back. Reactive oxygen species, DNA damage and expression profiles of antioxidant/DNA Damage Response genes were measured, as main hallmarks of the seed response to desiccation stress. Nuclear ultrastructural features were also investigated. Overprimed seeds subjected to dry-back revealed altered rRNA accumulation profiles and up-regulation of genes involved in ribogenesis control. The signal molecule PAP (3'-phosphoadenosine 5'-phosphate) accumulated during dry-back only in primed seeds, as a distinctive feature of desiccation tolerance. The presented results show the molecular and ultrastructural landscapes of the seed desiccation response, including substantial changes in nuclear organization.


Assuntos
Medicago truncatula , Difosfato de Adenosina , Dano ao DNA , Dessecação , Germinação/fisiologia , Medicago truncatula/metabolismo , Sementes/fisiologia
15.
Genes (Basel) ; 12(12)2021 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-34946962

RESUMO

Hidden hunger, or micronutrient deficiency, is a worldwide problem. Several approaches are employed to alleviate its effects (e.g., promoting diet diversity, use of dietary supplements, chemical fortification of processed food), and among these, biofortification is considered as one of the most cost-effective and highly sustainable. Rice is one of the best targets for biofortification since it is a staple food for almost half of the world's population as a high-energy source but with low nutritional value. Multiple biofortified rice lines have been produced during the past decades, while few studies also reported modifications in germination behavior (in terms of enhanced or decreased germination percentage or speed). It is important to underline that rapid, uniform germination, and seedling establishment are essential prerequisites for crop productivity. Combining the two traits, biofortified, highly-nutritious seeds with improved germination behavior can be envisaged as a highly-desired target for rice breeding. To this purpose, information gathered from transcriptomics studies can reveal useful insights to unveil the molecular players governing both traits. The present review aims to provide an overview of transcriptomics studies applied at the crossroad between biofortification and seed germination, pointing out potential candidates for trait pyramiding.


Assuntos
Biofortificação/métodos , Perfilação da Expressão Gênica/métodos , Oryza/crescimento & desenvolvimento , Locos de Características Quantitativas , Regulação da Expressão Gênica de Plantas , Germinação , Oryza/genética , Melhoramento Vegetal , Proteínas de Plantas/genética
16.
Physiol Plant ; 172(4): 2153-2169, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33964177

RESUMO

The present study aimed to evaluate the effect of Bacillus amyloliquefaciens and/or Arbuscular Mycorrhizal Fungi (AMF) as natural biofertilizers on biomass, yield, and seed nutritive quality of soybean (Giza 111). The conditions investigated include a well-watered (WW) control and irrigation withholding at the seed development stage (R5, after 90 days from sowing) (DS). Co-inoculation with B. amyloliquefaciens and AMF, resulted in the highest plant biomass and yield under WW and DS conditions. The nuclear DNA content analysis suggested that co-inoculation with B. amyloliquefaciens and AMF decreased the inhibition of drought stress on both the size and granularity of seed cells, which were comparable to the normal level. The single or co-inoculation with B. amyloliquefaciens and AMF increased the primary metabolites content and alleviated the drought-induced reduction in soluble sugars, lipids, protein and oil contents. Plant inoculation induced the expression of genes involved in lipid and protein biosynthesis, whereas an opposite trend was observed for genes involved in lipid and protein degradation, supporting the observed increase in lipid and protein content. Plant inoculated with B. amyloliquefaciens showed the highest α-amylase and ß-amylase activities, indicating improved osmolyte (soluble sugar) synthesis, particularly under drought. Interestingly, single or co-inoculation further strengthen the positive effect of drought on the antioxidant and osmoprotectant levels, i.e. phenol, flavonoid, glycine betaine contents, and glutathione-S-transferase (GST) activity. As a result of stress release, there was a decrease in the level of stress hormones (abscisic acid, ABA) and an increase in gibberellin (GA), trans-zeatin-riboside (ZR), and indole acetic acid (IAA) in the seeds of inoculated plants. Additionally, the ATP content, hydrolytic activities of plasma membrane H+ -ATPase, Ca2+ -ATPase, and Mg2+ -ATPase were also increased by the inoculation.


Assuntos
Bacillus amyloliquefaciens , Micorrizas , Secas , Raízes de Plantas , Sementes , Glycine max
18.
BMC Complement Med Ther ; 21(1): 153, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34044827

RESUMO

BACKGROUND: Hyperactivation of mechanistic target of rapamycin (mTOR) signaling pathway is involved in the regulation of cellular growth, proliferation, and more in general, is a common phenomenon in most types of cancers. Thus, natural substances targeting this pathway can be of great therapeutic potential in supporting the treatment of tumor patients. Rhus tripartita (Ucria) Grande is a plant growing in desertic areas which is traditionally used for the treatment of several diseases in Tunisia. In the present work, the biochemical profile of the main compounds present in the plant leaf extract was determined and the anti-leukemic potential of the plant extracts against acute monocytic leukaemia (AML) THP-1 cells was investigated. METHODS: After HPLC identification of some phenolic compounds present in the plant extract and the quantification of saponin content, the cytotoxic effect of Rhus tripartita extracts on THP-1 cell culture was evaluated using the colorimetric MTT assay for cell viability. THP-1 cells were incubated with medium containing the relative IC50 concentrations of total plant extract, saponin extract and some standard compounds (rutin (R); kaempferol (K); mixture of catechin, epicatechin, and epicatechin-gallate (CEEG); ellagic acid (EA). Finally, qRT-PCR and western blotting analysis were used to evaluate the effect of some flavonoids present in a crude extract of polyphenols and the total extract of saponins on cell survival and apoptosis. RESULTS: Analysis of expression level of some gene (PIK3CA, PTEN, AKT1, mTOR, EIF4E, RPS6KB1, and TSC1) involved in the mTOR pathway and the phosphorylation of S6 and AKT proteins allowed to observe that a total Rhus tripartita extract and some of the compounds found in the extract controls THP-1 cell proliferation and apoptosis via regulation of the PI3K-Akt-mTOR signaling pathway. CONCLUSION: Rhus tripartita-induced inhibition of cell cycle and induction of apoptosis may involve the mTOR pathway. Therefore, Rhus tripartita extract may be a useful candidate as a natural anti-cancer drug to support the treatment of AML.


Assuntos
Apoptose/efeitos dos fármacos , Polifenóis/farmacologia , Rhus/química , Saponinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos/farmacologia , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células THP-1 , Serina-Treonina Quinases TOR/metabolismo
19.
Front Plant Sci ; 12: 639336, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841466

RESUMO

Seed priming can circumvent poor germination rate and uniformity, frequently reported in eggplant (Solanum melongena L.) and its crop wild relatives (CWRs). However, there is still a gap of knowledge on how these treatments impact the pre-germinative metabolism in a genotype- and/or species-dependent manner. The CWR Solanum villosum Miller (hairy nightshade) investigated in this study showed a quite unique profile of fast germination. Although this accelerated germination profile would not apparently require further improvement, we wanted to test whether priming would still be able to impact the pre-germinative metabolism, eventually disclosing the predominant contribution of specific antioxidant components. Hydropriming followed by dry-back resulted in synchronized germination, as revealed by the lowest MGR (Mean Germination Rate) and U (Uncertainty) values, compared to unprimed seeds. No significant changes in ROS (reactive oxygen species) were observed throughout the treatment. Increased tocopherols levels were detected at 2 h of hydropriming whereas, overall, a low lipid peroxidation was evidenced by the malondialdehyde (MDA) assay. Hydropriming resulted in enhanced accumulation of the naturally occurring antioxidant phenolic compounds chlorogenic acid and iso-orientin, found in the dry seeds and ex novo accumulation of rutin. The dynamic changes of the pre-germinative metabolism induced by hydropriming are discussed in view of future applications that might boost the use of eggplant CWRs for breeding, upon upgrade mediated by seed technology.

20.
Front Plant Sci ; 12: 645323, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33767724

RESUMO

One of the challenges that living organisms face is to promptly respond to genotoxic stress to avoid DNA damage. To this purpose, all organisms, including plants, developed complex DNA damage response (DDR) mechanisms. These mechanisms are highly conserved among organisms and need to be finely regulated. In this scenario, microRNAs (miRNAs) are emerging as active players, thus attracting the attention of the research community. The involvement of miRNAs in DDR has been investigated prominently in human cells whereas studies in plants are still scarce. To experimentally investigate the involvement of plant miRNAs in the regulation of DDR-associated pathways, an ad hoc system was developed, using the model legume Medicago truncatula. Specific treatments with camptothecin (CPT) and/or NSC120686 (NSC), targeting distinct components of DDR, namely topoisomerase I (TopI) and tyrosyl-DNA phosphodiesterase 1 (TDP1), were used. Phenotypic (germination percentage and speed, seedling growth) and molecular (cell death, DNA damage, and gene expression profiles) analyses demonstrated that the imposed treatments impact DDR. Our results show that these treatments do not influence the germination process but rather inhibit seedling development, causing an increase in cell death and accumulation of DNA damage. Moreover, treatment-specific changes in the expression of suppressor of gamma response 1 (SOG1), master-regulator of plant DDR, were observed. Additionally, the expression of multiple genes playing important roles in different DNA repair pathways and cell cycle regulation were differentially expressed in a treatment-specific manner. Subsequently, specific miRNAs identified from our previous bioinformatics approaches as putatively targeting genes involved in DDR processes were investigated alongside their targets. The obtained results indicate that under most conditions when a miRNA is upregulated the corresponding candidate target gene is downregulated, providing an indirect evidence of miRNAs action over these targets. Hence, the present study extends the present knowledge on the information available regarding the roles played by miRNAs in the post-transcriptional regulation of DDR in plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA